Jordan mappings of semiprime rings II

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on Jordan∗− Derivations in Semiprime Rings with Involution

In this paper we prove the following result. Let R be a 6−torsion free semiprime ∗−ring and let D : R → R be an additive mapping satisfying the relation D(xyx) = D(x)y∗x∗ + xD(y)x∗ + xyD(x), for all pairs x, y ∈ R. In this case D is a Jordan ∗−derivation. Mathematics Subject Classification: 16W10, 39B05

متن کامل

On Θ-centralizers of Semiprime Rings (ii)

The following result is proved: Let R be a 2-torsion free semiprime ring, and let T : R → R be an additive mapping, related to a surjective homomorphism θ : R → R, such that 2T (x2) = T (x)θ(x) + θ(x)T (x) for all x ∈ R. Then T is both a left and a right θ-centralizer.

متن کامل

Generalized Jordan Triple Higher ∗−Derivations on Semiprime Rings

Let R be an associative ring not necessarily with identity element. For any x, y ∈ R. Recall that R is prime if xRy = 0 implies x = 0 or y = 0, and is semiprime if xRx = 0 implies x = 0. Given an integer n ≥ 2, R is said to be n−torsion free if for x ∈ R, nx = 0 implies x = 0.An additive mapping d : R → R is called a derivation if d(xy) = d(x)y + yd(x) holds for all x, y ∈ R, and it is called a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Australian Mathematical Society

سال: 1991

ISSN: 0004-9727,1755-1633

DOI: 10.1017/s000497270002966x